

SCIENCES, TECHNOLOGIES, SANTÉ

Ingénieur spécialité Systèmes Embarqués et Télécommunications

Niveau d'étude visé BAC +5

ECTS 300 crédits

Durée 10 semestres

Composante INSA Hauts-de-France

Langue(s) d'enseignement Français

Présentation

La formation s'appuie sur des enseignements théoriques généraux (mathématiques, électronique, informatique, traitement du signal) et sur des enseignements spécialisés en électronique embarquée, informatique embarquée et en télécommunications, et ce au travers d'enseignements traditionnels et de plusieurs Activités de Mise en Situation (projets innovation, Plateaux projet) qui permettent l'acquisition de réels savoir-faire face à des problèmes industriels concrets ou de recherche, en mettant en application les compétences scientifiques et techniques des élèves, et en favorisant le développement de nouvelles compétences liées au travail collaboratif.

Sur le cycle ingénieur, plusieurs grands blocs d'enseignements sont proposés sur l'ensemble des trois années, avec une acquisition progressive des compétences :

- Bloc Humanités : Langues, Communication, Management de projet, connaissance de l'entreprise, Droit du travail, etc. Une part importante concerne la formation par les activités physiques, sportives et artistiques ainsi que le développement du savoir-être indispensable.
- Bloc Electronique : analyse et caractérisation des performances d'un composant ou d'un système électronique, conception, optimisation et réalisation d'une architecture électronique embarquée selon un cahier des charges précis.

- Bloc Informatique: conception et mise en œuvre de l'architecture de pilotage d'un système embarqué, développement et programmation de composants avancés.
- Bloc Télécommunications : analyse et conception des systèmes de communication radio mobile, des systèmes dédiés (automobile et ferroviaire) et objets communicants (IoT). Analyse et caractérisation de l'environnement radio, explorer les standards existants et émergents (5G et audelà par ex.) et comprendre l'évolution des différents services mobiles.
- Bloc Systèmes Intelligents : conception et implémentation des systèmes d'intelligence artificielle, en tenant compte des contraintes de l'embarqué notamment liées aux ressources matérielles et à la consommation d'énergie. Une partie des enseignements concerne les fondamentaux de l'intelligence artificielle, consolidée par des méthodes de conception sous contraintes de l'embarqué.
- Bloc Domaines applicatifs : techniques, méthodes et outils des Transports intelligents terrestres (automobile et ferroviaire), des Technologies pour la santé et enfin de l'Internet des objets. Des cycles de conférences et des modules spécifiques sont notamment assurés par des intervenants issus du monde professionnel.

PROJETS: en 3ème et 4ème années, les élèves sont amenés à prendre en charge des projets multidisciplinaires et innovants en équipe. L'INSA Hauts-de-France intègre dans son cursus une formation à la prise de responsabilités et au

développement de l'autonomie, que ce soit à l'intérieur de l'établissement ou dans un cadre extra-universitaire.

ainsi que l'internet des objets, compétences directement exploitables dans l'industrie ou la recherche.

Objectifs

Former des ingénieurs R&D disposant de compétences solides sur les plans théorique et pratique leur permettant à l'aide d'une démarche transversale de concevoir, analyser, développer et mettre en œuvre des systèmes électroniques intelligents, à l'aide des outils de l'électronique et de l'informatique. Ces systèmes électroniques seront capables de répondre en temps réel aux sollicitations et pourront être embarqués au sein de systèmes autonomes en énergie et communicants à distance sans fil.

L'ingénieur ESE aura les compétences pour définir l'architecture globale de systèmes électroniques embarqués et les mettre en œuvre en intégrant des briques élémentaires et en assurant leurs interconnexions. Il sera aussi un concepteur de ces mêmes briques élémentaires (composants, accélérateurs matériels, outils de traitement de signaux, cartes électroniques). Ces compétences seront acquises au travers de différents cadres applicatifs tels que les transports terrestres (automobile et ferroviaire), les technologies pour la santé ainsi que l'internet des objets, compétences directement exploitables dans l'industrie ou la recherche.

Savoir-faire et compétences

L'ingénieur ESE aura les compétences pour définir l'architecture globale de systèmes électroniques embarqués et les mettre en œuvre en intégrant des briques élémentaires et en assurant leurs interconnexions. Il sera aussi un concepteur de ces mêmes briques élémentaires (composants, accélérateurs matériels, outils de traitement de signaux, cartes électroniques).

Ces compétences seront acquises au travers de différents cadres applicatifs tels que les transports terrestres (automobile et ferroviaire), les technologies pour la santé

Dimension internationale

Tout au long de sa scolarité, chaque élève peut adapter sa formation en fonction de son projet professionnel et de ses résultats, grâce aux différentes opportunités internationales. Un semestre académique à l'étranger est obligatoire durant la scolarité.

Il est possible d'effectuer une partie du cursus dans l'une de nos universités partenaires réparties à travers le monde (Allemagne, Brésil, Canada, Chine, Espagne, Pologne, Grande-Bretagne, Maroc, Italie, Norvège, Pays-Bas, Roumanie, Suède...) et de préparer un double diplôme en passant 18 mois à l'étranger avec une durée supplémentaire de 6 mois par rapport au cursus initial.

Organisation

Stages

Stage: Obligatoire

2 stages obligatoires de longue durée sont intégrés dans le cycle ingénieur.

En début de 4ème année, il se déroule de début septembre à fin janvier, et en 5ème année de début mars à fin août. Ces périodes de stage ont pour objectifs d'aider l'élève à définir son projet professionnel, de lui permettre d'acquérir une connaissance du monde industriel et de mettre en œuvre ses compétences techniques.

Admission

Conditions d'admission

- 1ère année Bac scientifique S spécialités: Maths+ Sciences physiques ou Maths+ Sciences de l'ingénieur ou Maths+ Sciences numériques et informatique ou Maths+ SVT
- 2ème année L1 scientifique, 1ère école d'ingénieur postbac, 1ère année CPGE
- · 3ème année DUT, 2ème année CPGE, L2, L3, ATS
- · 4ème année M1, parcours compatible avec la spécialité

https://www.uphf.fr/insa-hdf/formation/candidatures-inscriptions/candidature

Pour le public Formation continue : L' https://www.uphf.fr/entreprises/formation-professionnelle-alternance

Modalités d'inscription

Formation initiale : https://www.uphf.fr/insa-hdf/candidatures-inscriptions

Droits de scolarité

Consultez le montant des droits d'inscriptions

Et après

Poursuite d'études

Les élèves de l'INSA ont l'opportunité de poursuivre en thèse dans l'un des laboratoires de l'Université Polytechnique Hauts-de-France et de l'INSA.

Insertion professionnelle

Fonctions : R&D, ingénieur d'études et conseils techniques, chef de projet, ingénieur d'affaires, consultant, etc.

Secteurs : De par ses compétences, l'ingénieur ESE pourra travailler dans les secteurs liés aux transports terrestres (automobile et ferroviaire), aux technologies pour la santé ainsi que l'internet des objets. Ses compétences scientifiques

et techniques lui permettront aussi d'aborder d'autres secteurs tels que l'aéronautique, les télécommunications, l'industrie électronique, etc.

Intitulés métiers visés

Fonctions exercées :

- · Ingénieur systèmes électroniques embarqués,
- · Ingénieur architecte plate-forme embarquée,
- · Ingénieur technologies embarquées / responsable support
- · Ingénieur développement logiciel,
- · Ingénieur en intégration et validation,
- · Ingénieur qualification/validation,
- Ingénieur process et méthodes / assurance qualité / certification

Infos pratiques

Contacts

Contact département Electronique

- 03 27 51 12 34
- scolarite.electronique@insa-hdf.fr

Admission Ingénieur FISE

admission.ingenieur@insa-hdf.fr

Contact Formation Continue

■ formation.continue@insa-hdf.fr

Lieu(x)

CAMPUS MONT HOUY - VALENCIENNES

Programme

Volume horaire global : 2100h + 40 semaines de stages

ANNEE 3

SEMESTRE 5

	Nature	CM	TD	TP	Crédits
Langues et sciences humaines 1	UE				5 crédits
Anglais 1	UE				
2ème langue (optionnelle)	UE				
Responsabilité sociétale et environnementale	UE				
Organisation des entreprises	UE				
Comptabilité	UE				
FAPSA	UE				
Mathématiques-informatique 1	UE				3 crédits
Concepts fondamentaux d'algorithmique	UE				
Outils mathématiques	UE				
Electronique de base 1	UE				4 crédits
Electronique	UE				
Electrotechnique	UE				
Automatique et traitement du signal	UE				4 crédits
Traitement du signal	UE				
Automatique continue et échantillonnée	UE				
Bases de l'électronique numérique	UE				5 crédits
Composants et fonctions de l'électronique numérique	UE				
Conversion analogique/numérique	UE				
Synthèse logique	UE				
Bases de télécommunications 1	UE				5 crédits
Transmission numérique l	UE				
Transmission numérique II	UE				
Télécommunications 2	UE				4 crédits
IoT Internet of Things	UE				
Canaux de propagation	UE				
SEMESTRE 6					
	Nature	CM	TD	TP	Crédits
Langues et sciences humaines 2	UE				5 crédits
Anglais	UE				

2ème langue (optionnelle)	UE	
Communication individuelle	UE	
Carrières de l'ingénieur	UE	
Santé et sécurité au travail	UE	
FAPSA	UE	
Innovation	UE	3 crédits
Projet innovation et créativité	UE	
Cycle de conférences	UE	
Mathématique-Informatique 2	UE	4 crédits
Analyse numérique	UE	
Programmation en C et Python	UE	
Architecture avancée des microcontrôleurs	UE	4 crédits
Architecture des microprocesseurs	UE	
Systèmes à base de microcontrôleurs	UE	
Electronique 2	UE	4 crédits
Hyperfréquence	UE	
Electronique de puissance et de commande.	UE	
FPGA et Systèmes électroniques associés	UE	5 crédits
FPGA et systèmes électroniques associés	UE	
Architecture des systèmes embarqués	UE	
Signaux numériques	UE	
Informatique	UE	5 crédits
Intro à l'IA	UE	
Distributed system architecture (DSA)	UE	
Système de gestion de base de données	UE	

ANNEE 4

SEMESTRE 7

	Nature	CM	TD	TP	Crédits
Stage 4A	UE				30 crédits

SEMESTRE 8

	Nature	CM	TD	TP	Credits
Langues et sciences humaines 3	UE				6 crédits
Anglais	UE				
2ème langue (optionnelle)	UE				
FAPSA	UE				
Propriété intellectuelle	UE				
Communication de groupe	UE				

Entrepreneuriat	UE	
Management des Ressources Humaines	UE	
Langages de programmation et codages de données	UE	6 crédits
Langage Java	UE	
Codage avancé pour l'embarqué	UE	
Connectivité des systèmes embarqués	UE	
Langage de programmation de l'assembleur au python	UE	
Traitement du signal pour l'instrumentation	UE	4 crédits
Capteurs et réseaux de capteurs	UE	
Traitement numérique du signal	UE	
Télécommunications embarquées	UE	5 crédits
Standard radio: évolution vers la 5G	UE	
Circuit HF et télécommunications optiques	UE	
Antennes et transmissions embarquées	UE	
Systèmes de transports intelligents	UE	5 crédits
Système de communication pour le ferroviaire (ERTMS)	UE	
Communications inter et intra véhicules	UE	
Véhicule autonome	UE	
Sécurité des systèmes embarqués	UE	4 crédits
Sécurisation des données (cryptologie)	UE	
Vidéosurveillance et systèmes de sécurité	UE	

ANNEE 5

SEMESTRE 9

	Nature	CM	TD	TP	Crédits
Langues et sciences humaines 4	UE				4 crédits
Anglais	UE				
2ème langue (optionnelle)	UE				
FAPSA	UE				
Droit du travail	UE				
Conduite de projet	UE				
Plateau-projet	UE				6 crédits
Plateau-projet	UE				
Coaching plateau-projet	UE				
Cours électifs	UE				3 crédits
Accélérateurs matériels	UE				6 crédits
Systèmes multi-processeurs embarqués	UE				
Field programmable Gate Array (FPGA)	UE				
Hardware Software Co-Design	UE				

Télécommunications	UE	5 crédits
Radio intelligente et logicielle	UE	
Transmissions avancées	UE	
Communications numériques avancées	UE	
Architecture embarquée	UE	6 crédits
Prototypage des systèmes embarqués	UE	
Architecture temps réel pour l'embarqué	UE	
Embedded systems reliability	UE	
Machine learning for embedded systems	UE	
SEMESTRE 10		

	Nature	CM	TD	TP	Credits
Stage 5A	UE				30 crédits