

STI - Formation scientifique générale

Présentation

Objectifs

Au terme de cette UE, les étudiants seront capables de :

- A) Pour la partie Mathématiques 2 :
- Développer avec rigueur une méthode de calcul,
- Utiliser l'outil indispensable à la modélisation et au développement des autres disciplines.
- B) Pour la partie Thermique:
- -Expliquer la signification physique de la conductivité et de la diffusivité thermique, des nombres de Biot, Fourier, Prandtl, Reynolds et Nusselt :
- Analyser un problème thermique permanent et instationnaire simple et le résoudre avec un modèle mathématique pertinent;
- Calculer des coefficients d'échanges par convection à partir d'une géométrie et d'un écoulement donnés.
- Calculer les températures et flux pour des modèles simples d'échangeur de chaleur.
- C) Pour la partie Automatique échantillonnée Systèmes discrets :
- Analyser les propriétés d'un système en temps discret,
- Appliquer une méthode d'identification de système dynamique
- Concevoir une loi de commande correspondant à des spécifications données

Pré-requis obligatoires

ECUE « Mathématiques » du semestre 5

Commande machines : automatique fréquentielle, systèmes du premier et second ordre, nombre complexe, décomposition en éléments simples, algèbre linéaire (systèmes d'équations linéaires, calculs matriciels, valeurs et vecteurs propres)

Bibliographie

Analyse et régulation des processus industriels, Tome 2 Régulation numérique, P. Borne et al., Technip, Computer-Controlled Systems, K. J. Astrom and B. Wittenmark, Prentice Hall

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Mathématiques 2	UE				
Thermique	UE				
Automatique échantillonnée - systèmes discrets	UE				